

HEART FAILURE

With EJECTION FRACTION >40%

► **Improving Management**
of HFpEF and HFmrEF

Heart failure with preserved ejection fraction is an increasingly prevalent condition with alarming morbidity and mortality rates

Yet proven treatment options are limited, making HFpEF a growing population health concern¹⁻³

In the United States,
~50% of patients die within 5 years of HF diagnosis⁴

Incidence rates are increasing, with HFpEF making up more than half of all HF cases^{1,5}

Among US patients with HF^{5*}:

36% have HFrEF

8% have HFmrEF

57% have HFpEF

According to data from the Framingham Heart Study¹:

HFpEF
Incidence increased 37%

WHILE

HFrEF
Incidence decreased 30%

over a 30-year period[†]

HFpEF incidence rates are outpacing those of HFrEF due to⁶:

Increased life expectancy

Epidemic of cardiac and non-cardiac comorbidities

Increased clinical recognition of HFpEF

HFpEF disproportionately impacts women and the elderly^{7,8}

Women outnumber men by a ratio of ~2:1[‡] and a majority of patients are >65 years of age^{7,8}

DESPISE A NOTABLE RISE IN ITS PREVALENCE OVER TIME

There are fewer guideline-directed medical therapies for HFpEF, with most recommendations currently in classes 2a and 2b³

*According to a large observational analysis of data collected from 2008 to 2016 by the Veradigm Cardiology Registry® (formerly the ACC's NCDR PINNACLE Registry®). Percentages total greater than 100% due to rounding.⁵

[†]HF prevalence data for 894 outpatients with new onset HF from the community-based Framingham Study over 3 decades (1985-2014). LVEF categories were defined as HFrEF (EF <40%), HFmrEF (EF 40-<50%), and HFpEF (EF ≥50%).¹

[‡]Based on a community surveillance study of 2,762 incident HF cases between 2000 and 2010 in the population of Olmsted County, Minnesota. HFrEF was defined by an EF <50% and HFpEF was defined by an EF ≥50%. EF data were missing in 21.6% of cases. Among patients with available EF measurement, 1,089 had HFpEF, with women accounting for 701 HFpEF cases and men accounting for 388 HFpEF cases across the 10-year study period.⁷

ACC, American College of Cardiology; EF, ejection fraction; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; LVEF, left ventricular ejection fraction; NCDR, National Cardiovascular Data Registry.

HFpEF is associated with a staggering economic burden, driven by high rates of hospitalizations, readmissions, and deaths

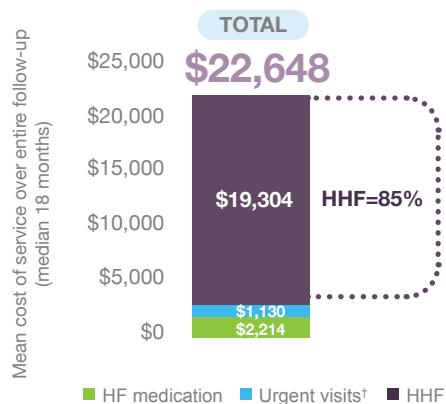
Patients with HFpEF have high rates of hospitalizations — the largest driver of medical costs^{2,9-12}

Annually, among US patients with HF as a primary diagnosis, there are⁹:

~1.1 million
ED visits

980,000
Hospitalizations

84,000
Deaths


Hospitalizations for heart failure (HHF) comprise the largest component of direct medical costs associated with HF¹¹

\$11B
Estimated annual costs for HHF in the US

\$7,860 to \$10,551
Mean cost per HHF among patients with HFpEF

HHF comprised 85% of HCRU in patients with HFpEF¹²

HCRU costs in patients with HFpEF during post-diagnosis follow-up period (median 18 months)^{12*}

Patients hospitalized with HFpEF have high rates of readmission and death²

20%
readmitted within 30 days of hospital discharge²

>50%
readmitted within 1 year of hospital discharge²

35%
5-year survival rate post HHF²

Without additional interventions to treat HFpEF, medical costs associated with this condition are expected to increase by >70% by 2030^{13‡}

*According to a 2021 retrospective, claims-based study. Patients were indexed on date of first/earliest claim with a HF diagnosis code. Variable follow-up extended from indexing until the earliest loss of medical/pharmacy eligibility or end of study period, ranging from 0 to 71 months.¹²

†Urgent HF visits were defined as emergency department visits with HF as the primary diagnosis.¹²

‡Percentage increase calculated based on projected increase in medical costs for HF in the United States from 2020 to 2030.¹³

Limited clinically proven treatment options and underutilization of GDMT underscore a critical need for improved management of HFpEF and HFmrEF

Current guideline-recommended treatment options for both HFmrEF and HFpEF are limited—particularly among Class I options³

AHA/ACC/HFSA guidelines: Recommendations for chronic HF (2022)

GDMT in the HFpEF real-world patient population is underutilized, particularly as compared with HFrEF¹⁴

Real-World Utilization of Guideline-Directed Medical Therapies^{14†}

Optimized implementation of GDMT and a multimodal therapeutic approach may improve outcomes in HFpEF¹⁴

*Greater benefit in patients with LVEF closer to 50%.

†Utilization data from January 2023 to December 2023.

‡Not recommended for use in HFpEF in the 2022 AHA/ACC/HFSA Heart Failure Guideline.³

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor-neprilysin inhibitor; BB, beta blocker; GDMT, guideline-directed medical therapy; HFSA, Heart Failure Society of America; MRA, mineralocorticoid receptor antagonist; SGLT2i, sodium-glucose cotransporter 2 inhibitor.

HFpEF poses a high clinical and economic burden but has limited treatment options, resulting in an urgent unmet need

Recent data suggest escalating prevalence and alarming morbidity and mortality rates in HFpEF^{1,2}

This immense clinical burden is resulting in high healthcare costs, which are predominately generated by hospitalizations¹⁰

As there are limited clinically proven options to treat HFpEF, additional treatment options are essential to stem the rising hospitalization rates and associated costs^{3,10}

There is a key opportunity to improve outcomes in patients with HFpEF via a multimodal treatment regimen with GDMT¹⁴

References: 1. Vasan RS, Xanthakis V, Lyass A, et al. Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. *JACC Cardiovasc Imaging*. 2018;11(1):1-11. 2. Upadhyay B, Kitzman DW. Heart failure with preserved ejection fraction: new approaches to diagnosis and management. *Clin Cardiol*. 2020;43(2):145-155. 3. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. *J Am Coll Cardiol*. 2022;79(17):e263-e421. 4. Olchanski N, Vest AR, Cohen JT, DeNofrio D. Comparing inpatient costs of heart failure admissions for patients with reduced and preserved ejection fraction with or without type 2 diabetes. *Cardiovasc Endocrinol Metab*. 2020;9(1):17-23. 5. Ibrahim NE, Song Y, Cannon CP, et al. Heart failure with mid-range ejection fraction: characterization of patients from the PINNACLE Registry®. *ESC Heart Failure*. 2019;6(4):784-792. 6. Oktay AA, Rich JD, Shah SJ. The emerging epidemic of heart failure with preserved ejection fraction. *Curr Heart Fail Rep*. 2013;10(4):401-410. 7. Gerber Y, Weston SA, Redfield MM, et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. *JAMA Intern Med*. 2015;175(6):996-1004. 8. Tromp J, Shen L, Jhund PS, et al. Age-related characteristics and outcomes of patients with heart failure with preserved ejection fraction. *J Am Coll Cardiol*. 2019;74(5):601-612. 9. Jackson SL, Tong X, King RJ, Louston F, Hong Y, Ritchey MD. National burden of heart failure events in the United States, 2006 to 2014. *Circ Heart Fail*. 2018;11(12):e004873. 10. Clark H, Rana R, Gow J, Pearson M, van der Touw T, Smart N. Hospitalisation costs associated with heart failure with preserved ejection fraction (HFpEF): a systematic review. *Heart Fail Rev*. 2022;27(2):559-572. 11. Osenenko KM, Kuti E, Deighton AM, Pimple P, Szabo SM. Burden of hospitalization for heart failure in the United States: a systematic literature review. *J Manag Care Spec Pharm*. 2022;28(2):157-167. 12. Lam CSP, Wood R, Vaduganathan M, et al. Contemporary economic burden in a real-world heart failure population with commercial and Medicare supplemental plans. *Clin Cardiol*. 2021;44(5):646-655. 13. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. *Circ Heart Fail*. 2013;6(3):606-619. 14. Bayer analysis of data on file.