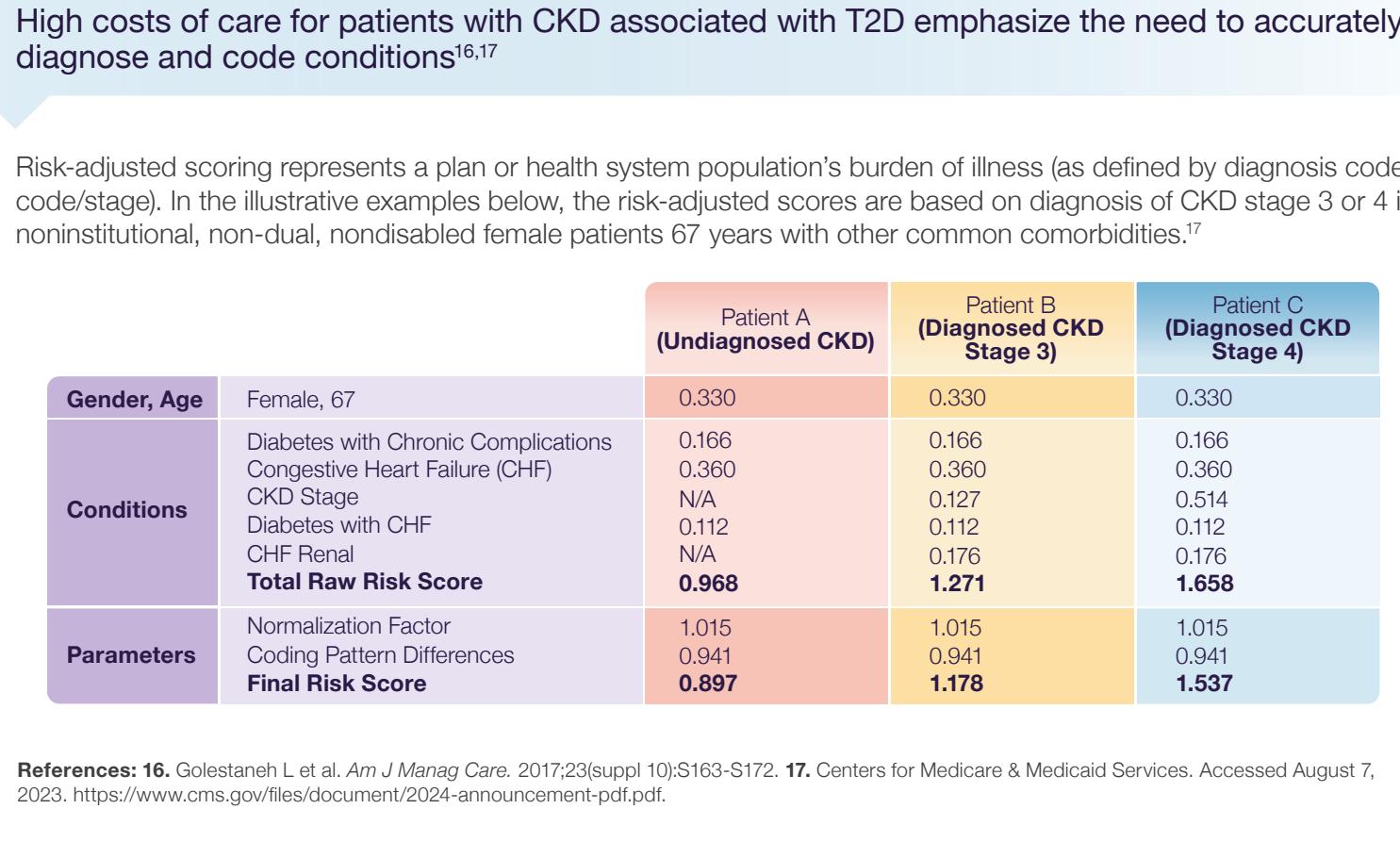


Discovering unmet needs in chronic kidney disease (CKD) and cardiovascular disease (CVD)

Reduce kidney and CV risk through appropriate testing, diagnosis, and treatment;
CKD associated with T2D is a major population health concern

By 2060, the diabetes population is expected to double to over
60 million
people, which signals a rise in CKD cases²

Up to
40%
of patients with T2D have CKD³


Despite this high prevalence,
~90%
of patients with diabetes and CKD are unaware of their kidney disease^{4,5}

According to the Centers for Disease Control and Prevention, **CKD is more common in non-Hispanic Blacks (16.3%) and Hispanics (13.6%)** than in non-Hispanic Whites (12.7%) or non-Hispanic Asians (12.9%)⁶

¹Estimates of diabetes may not delineate between type 1 and type 2 diabetes. According to the American Diabetes Association, T2D accounts for 90%-95% of all diabetes cases. Therefore, statistics that describe diabetes may be more characteristic of T2D.⁶

References: 1. Statistics about diabetes. American Diabetes Association. Accessed March 18, 2024. <https://diabetes.org/about-diabetes/statistics/about-diabetes>. 2. Lin J, et al. *Popul Health Metr*. 2018;16(1):9. 3. Bailey RA, Wang Y, Zhu Y, Rupnow MFT. Chronic kidney disease in US adults with type 2 diabetes: an updated national estimate of prevalence based on Kidney Disease: Improving Global Outcomes (KDIGO) staging. *BMC Res Notes*. 2014;7:415. 4. United States Renal Data System. 2020 USRDS annual data report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2020. Accessed March 18, 2024. <https://usrds.adm.nih.gov/2020/chronic-kidney-disease/1-ckd-in-the-general-population>. 5. Chronic kidney disease in the United States, 2021. Centers for Disease Control and Prevention. Accessed October 17, 2023. <https://www.cdc.gov/kidneydisease/pdf/Chronic-Kidney-Disease-in-the-US-2021-h.pdf>. 6. American Diabetes Association. Standards of care in diabetes—2024. *Diabetes Care*. 2024;47(suppl 1):S1-S321.

Patient outcomes can be improved through appropriate testing, diagnosis, and Guideline-Directed Medical Therapy (GDMT)

NATIONAL FOCUS

Executive order on advancing kidney health

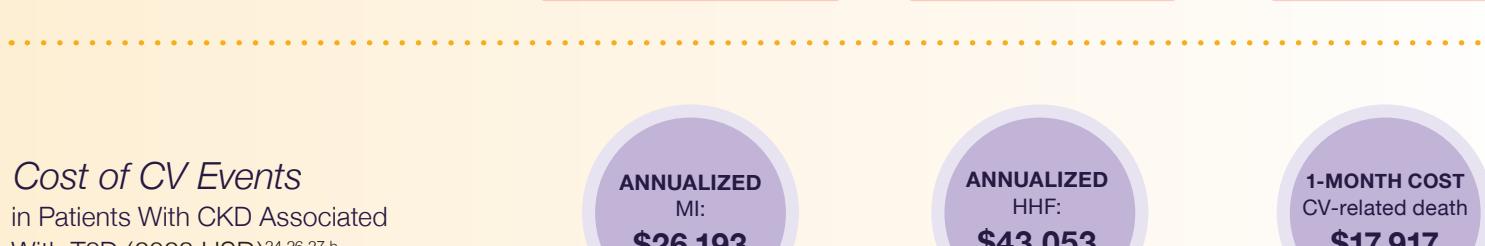
⁷As evidenced by a retrospective analysis of 101,057 patients with CKD associated with T2D across the US who had data in the Optum® Clininformatics® database. Investigators sought to evaluate eGFR and uACR testing rates over a 1-year period.⁷

References: 7. Betts KA, Song J, Elliott J, et al. Geographical variation in kidney function testing and associations with health care costs among patients with chronic kidney disease and type 2 diabetes. *Am J Manag Care*. 2022;28(6 suppl):S112-S119. 8. de Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). *Diabetes Care*. 2022;45(12):3075-3090. 9. American Diabetes Association. Standards of care in diabetes—2024. *Diabetes Care*. 2024;47(suppl 1):S1-S321. 10. Marx N, Federici M, Schütt K, et al; for the ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. *Eur Heart J*. 2023;44(39):4043-4140. 11. Kidney Disease Improving Global Outcomes. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. *Kidney Int*. 2022;102(Suppl 1):S1-S127. 12. Blonde L, Umpierrez GE, Reddy SS, et al. American Association of Clinical Endocrinology clinical practice guideline: developing a diabetes mellitus comprehensive care plan—2022 update. *Endocr Pract*. 2022;28(10):923-1049. 13. Chronic kidney disease often undiagnosed in Medicare beneficiaries. Centers for Medicare & Medicaid Services. Updated September 2021. Accessed March 18, 2024. <https://www.cms.gov/files/document/ckd-data-highlight102020-2.pdf>. 14. Kidney health evaluation for patients with diabetes (KED). National Committee for Quality Assurance. Accessed March 18, 2024. <https://www.ncqa.org/hedis/measures/kidney-health-evaluation-for-patients-with-diabetes>. 15. Medicare 2024 Part C & D Star Ratings Technical Notes. Centers for Medicare & Medicaid Services. Accessed March 18, 2024. <https://www.cms.gov/files/document/2024technotes20230929.pdf>.

High costs of care for patients with CKD associated with T2D emphasize the need to accurately diagnose and code conditions^{16,17}

Risk-adjusted scoring represents a plan or health system population's burden of illness (as defined by diagnosis code/code/stage). In the illustrative examples below, the risk-adjusted scores are based on diagnosis of CKD stage 3 or 4 in noninstitutional, non-dual, nondisabled female patients 67 years with other common comorbidities.¹⁷

		Patient A (Undiagnosed CKD)	Patient B (Diagnosed CKD Stage 3)	Patient C (Diagnosed CKD Stage 4)
Gender, Age	Female, 67	0.330	0.330	0.330
Conditions	Diabetes with Chronic Complications Congestive Heart Failure (CHF) CKD Stage Diabetes with CHF CHF Renal Total Raw Risk Score	0.166 0.360 N/A 0.112 N/A 0.968	0.166 0.360 0.127 0.112 0.176 1.271	0.166 0.360 0.514 0.112 0.176 1.658
Parameters	Normalization Factor Coding Pattern Differences Final Risk Score	1.015 0.941 0.897	1.015 0.941 1.178	1.015 0.941 1.537

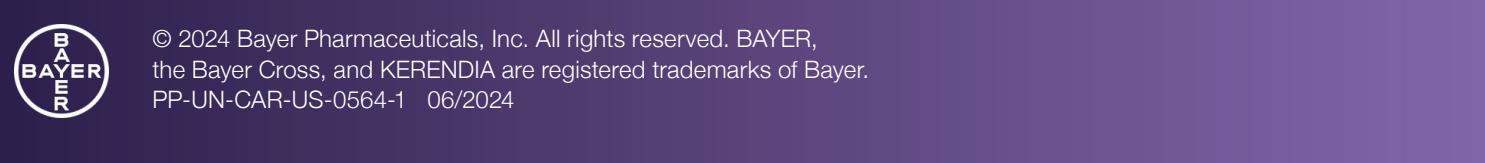

References: 16. Golestaneh L, et al. *Am J Manag Care*. 2017;23(suppl 10):S163-S172. 17. Centers for Medicare & Medicaid Services. Accessed August 7, 2023. <https://www.cms.gov/files/document/2024-announcement-pdf.pdf>.

Guideline-Directed Medical Therapies for CKD associated with T2D are underutilized

Real-World Utilization of Guideline-Directed Medical Therapies

GUIDELINE-DIRECTED CARE INCLUDES^{19,20}:

American Diabetes Association
AACE
KDIGO


ESC
European Society of Cardiology

Clinical practice guidance from the ADA and KDIGO recommends the use of pharmacotherapies to reduce risk in patients with CKD associated with T2D, though real-world data show that use is insufficient.¹⁹

Kidney disease approximately triples the risk of CV mortality in patients with diabetes

NHANES III was conducted between 1988 and 1994; this study used data from NHANES III participants aged ≥20 years who had follow-up mortality data through 2006.²¹ This study used data from NHANES III participants aged ≥20 years who participated in a health examination and had available data on medications used, serum creatinine, and creatinine concentrations. Of these, the only participants who were included were those who had follow-up mortality data through 2006, 15,046 of 15,762 NHANES III participants (95.5%); 1,320 (9.5%) of these participants had T2D.²²

References: 18. Data on file. Bayer. 19. de Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). *Diabetes Care*. 2022;45(12):3075-3090. 20. American Diabetes Association. Standards of care in diabetes—2023. *Diabetes Care*. 2023;46(suppl 1):S1-S291.

In adult patients with CKD associated with T2D, CV risk increases at early signs of eGFR decline or albuminuria.

Risk of CV death rises:

• As eGFR falls below 75 mL min/1.73 m², risk of CV death rises^{22,23}

• As uACR increases above 30 mg/g, risk of CV death rises^{22,23}

²¹Adjusted for age, sex, race or ethnic origin, smoking, SBP, antihypertensive drugs, diabetes, total and high-density lipoprotein cholesterol concentrations, and albuminuria (uACR or dipstick) or eGFR, as appropriate.

²²Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

²³As evidenced by a cross-sectional analysis of self-reported patient data collected between 2007 and 2012 from 2,006 patients with type 2 diabetes who completed NHANES.²³

²⁴Adjusted for age, sex, race or ethnic origin, smoking, SBP, antihypertensive drugs, diabetes, total and high-density lipoprotein cholesterol concentrations, and albuminuria (uACR or dipstick) or eGFR, as appropriate.

²⁵Adjusted for age, sex, race or ethnic origin, smoking, SBP, antihypertensive drugs, diabetes, total and high-density lipoprotein cholesterol concentrations, and albuminuria (uACR or dipstick) or eGFR, as appropriate.

²⁶Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

²⁷Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

²⁸As evidenced by a cross-sectional analysis of self-reported patient data collected between 2007 and 2012 from 2,006 patients with type 2 diabetes who completed NHANES.²³

²⁹Adjusted for age, sex, race or ethnic origin, smoking, SBP, antihypertensive drugs, diabetes, total and high-density lipoprotein cholesterol concentrations, and albuminuria (uACR or dipstick) or eGFR, as appropriate.

³⁰Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

³¹Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

³²Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

³³Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

³⁴Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

³⁵Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

³⁶Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

³⁷Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

³⁸Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

³⁹Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

⁴⁰Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

⁴¹Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

⁴²Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

⁴³Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

⁴⁴Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 2023 USD. Values rounded to nearest dollar.²⁴

⁴⁵Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was multiplied by original cost to generate inflated cost in 2023 USD.

⁴⁶Costs inflated to 2023 USD using MCPI from the US Bureau of Labor Statistics. MCPI from the half of relevant years used in calculations. Difference of MCPI (2%) and original cost was taken and divided by original cost in 2023 USD and then multiplied by 100 to generate inflated cost in 202